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Abstract
The present understanding of nonperturbative ground states in the fractional
quantum Hall effect is based on effective theories of the Jain ‘composite
fermion’ excitations. We review the approach based on matrix variables,
i.e. D0 branes, originally introduced by Susskind and Polychronakos. We
show that the Maxwell–Chern–Simons matrix gauge theory provides a matrix
generalization of the quantum Hall effect, where the composite-fermion
construction naturally follows from gauge invariance. The matrix ground
states obtained by suitable projections of higher Landau levels are found to be
in one-to-one correspondence with the Laughlin and Jain hierarchical states.
The matrix theory possesses a physical limit for commuting matrices that could
be reachable while staying in the same phase.

PACS numbers: 73.43.Jn, 03.67.Lx

1. Introduction

The quantized Hall effect occurs in systems of planar electrons inside layered semiconductors,
that are placed in strong magnetic fields B (∼10 Tesla) and very low temperatures
(T ∼ 1 mK − 1 K) [1]. For certain values of the field, the longitudinal Ohmic current
vanishes and the transverse component Rxy of the resistivity (Hall resistivity) is quantized
(figure 1):
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where ν is the ‘filling fraction’, that can be integer or fractional [2]. The regimes in which the
values of the resistivity are given by (1) are called ‘plateaux’ of the quantum Hall effect (QHE).
They correspond to very stable gapful ground states with uniform density ρ = νeB/hc, where
the electrons behave like a fluid with characteristic quantum effects [1]. The low-energy
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Figure 1. Diagonal and transverse resistivities in the fractional quantum Hall effect [5].

excitations are local deformations in the density (vortices) called quasi-holes and quasi-
particles; the density waves are also gapful such that the quantum fluid is incompressible. The
integer Hall effect can be described in terms of free electrons filling up the Landau levels,
while the fractional effect requires the consideration of interacting electrons.

In 1983, Laughlin proposed a phenomenological theory for the fillings ν = 1/(2k + 1),
with k a positive integer [3]: he described the incompressible fluid and predicted quasi-particles
with fractional charge that were observed in 1997 [4]. Other filling fractions not described
by Laughlin’s theory are observed experimentally, belonging to the series ν = n/(2nk ± 1),
where n > 1 and k are positive integers [1]. Upon introducing the idea of ‘composite fermions’
excitations, Jain argued that these fractional quantum Hall states actually correspond to integer
quantum Hall states of composite fermions [5]. Based on this relation, Jain obtained trial
wavefunctions that are confirmed by the numerical analyses. Moreover, weakly interacting
composite-fermion excitations have been observed in several experiments [1]. Fradkin and
Lopez [6] and others [7] realized the Jain correspondence in quantum field theory by letting
the electrons interact with a ‘statistical’ Chern–Simons gauge field. They studied the theory
within the mean field approximation and reproduced the Jain ground states and some of their
phenomenological features.

In this contribution, we review another possible effective theory for the fractional QHE,
that is based on matrix models or, more precisely, on gauge theories of matrices in (2 + 1)

dimensions, that are equivalent to noncommutative gauge theories. This approach is not yet
fully developed, but it presents some interesting features that we believe are worth discussing.

The presentation is organized as follows: the next section contains a short introduction
to the phenomenology of the integer and fractional QHE. We review the Laughlin theory [3],
the Jain interpretation of the fractional QHE [5] and the field theory proposed by Fradkin and
Lopez [6]. The third section deals with the Chern–Simons matrix model, and reviews the
work by Susskind and Polychronakos. Using results for D0-branes in string theory, Susskind
showed that two-dimensional semiclassical incompressible fluids in a strong magnetic field
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could be described by the noncommutative Chern–Simons theory [8]. Indeed, the use of
noncommuting spatial coordinates, x1, x2, i.e. [x1, x2] = iθ , implies a generalized uncertainty
relation that controls the effective size of electrons and thus reduces the density of the fluid,
leading to ν = 1/(1 + Bθ) < 1. Afterwards, Polychronakos modified the theory to describe a
finite droplet of fluid, and obtained the U(N) matrix gauge theory called the Chern–Simons
matrix model [9]. From the quantization of this theory, one finds the important result that
the ground states are exactly given by the Laughlin wavefunctions [10, 11]. However, the
Chern–Simons matrix model does not naturally describe the more general Jain states and the
full quantum theory does not reproduce the electron system of the QHE [12, 13].

Section 4 is devoted to our proposal of the Maxwell–Chern–Simons matrix theory [12]:
this is a generalization of Susskind–Polychronakos theory that contains an additional coupling
g � 0 controlling matrix noncommutativity. At g = 0, the theory corresponds to a matrix
generalization of the Landau levels, with an exponentially growing density of states that is
typical of matrix theories. We introduce a set of projections that not only limits the degeneracy
but also uniquely selects ground states that are matrix analogs of the expected Laughlin and
Jain states (section 5). This is the most interesting feature of the matrix approach to the QHE,
namely that the phenomenological ground states arise naturally from gauge invariance and the
projections. The same ground states are also found in the semiclassical analysis of the theory
[14]: they correspond to incompressible fluids with piecewise constant density, as expected
[5]. In section 6, we discuss the Maxwell–Chern–Simons matrix theory for g > 0: in the
g = ∞ limit, the matrix coordinates commute and the theory describes ordinary electrons in
Landau levels with O(1/r2) interaction, which is a good approximation of the QHE system
[1]. Although the phase diagram (0 < g < ∞) of the Maxwell–Chern–Simons theory is not
yet known, we conjecture that the matrix ground states found at g = 0 have a smooth g → ∞
limit into the phenomenological Laughlin and Jain states (no phase transition for finite g

values) [12]. The proof of this fact would confirm the physical relevance of the matrix theory
approach to the fractional QHE. In conclusions (section 7), we discuss some developments of
this line of research.

This paper is dedicated to the vivid memory of Alyosha Zamolodchikov.

2. Review of the fractional quantum Hall effect

2.1. Landau levels

Consider planar electrons of mass m and electric charge e in a uniform magnetic field B (in
units h̄ = 1, c = 1). The one-particle Hamiltonian is given by

H = − 1

2m
(∇ − ieA)2. (2)

We work in the symmetric gauge for the vector potential, Ai = (B/2)εij x
j , i, j = 1, 2. The

magnetic field introduces a length scale, the so-called magnetic length, � = √
2/eB. The use

of holomorphic spatial coordinates z = x1 + ix2 and z = x1 − ix2, is natural in the QHE [15].
By introducing two commuting sets of harmonic oscillators (∂ = ∂

∂z
and ∂ = ∂

∂z
),

d = z

2�
+ �∂, d† = z

2�
− �∂, [d, d†] = 1,

c = z

2�
+ �∂, c† = z

2�
− �∂, [c, c†] = 1,

(3)

the Hamiltonian (2) and the angular momentum can be written as follows:

H = ω
(
d†d + 1

2

)
, J = c†c − d†d, (4)

3



J. Phys. A: Math. Theor. 42 (2009) 304006 A Cappelli and I D Rodriguez

(a)

(b)

Figure 2. Graphical representation of the Landau levels: (a) integer and (b) fractional filling.

where ω = eB/m is the cyclotron frequency. Since the operators c and d commute, the
spectrum consists of infinitely degenerate levels (c†c excitations) with energies εn = ωn,
i.e. the Landau levels (d†d ladder). The degenerate states correspond to the semiclassical
cyclotron orbits, that are quantized by the condition that the contained flux is a multiple of the
quantum unit φ0 = eh/c, i.e. BAj = jφ0, with j being the angular momentum eigenvalue.
In the lowest Landau level, the one-particle wavefunctions take the form

ϕj (z, z) = 1

�
√

π

1

j !

(z

�

)j

e−zz/(2�2), dϕj (z, z) = 0, (5)

i.e. they are holomorphic in z up to an exponential factor. The associated one-particle densities
are indeed peaked at the semiclassical orbits.

On a finite region of area A, the number of degenerate states is equal to the flux through
the system in quantum units, Nφ = BA/φ0. In completely filled Landau levels, the Hall
conductivity is given by σxy = R−1

xy = νe2/h, where ν = N/Nφ is the filling fraction, i.e. the
number of electrons N divided by the number of available states. Figure 2(a) shows the ν = n

case in which n levels are filled with one electron per orbital (the spin degree of freedom is
frozen in the direction of B). The density is uniform and the electron fluid is incompressible
due to the exclusion principle, the gap being given by ω. Thus the simple theory of free
electrons in Landau levels is sufficient to describe the main physical properties of the integer
QHE. (The formation of the plateaux near integer fillings is explained by the localization of
excitations due to disorder.) [1].

On the other hand, if there are many empty orbitals like in the case ν = 1/3 (figure 2(b)),
the free-electron states are compressible, in contrast with the experimental observation: the
fractional QHE requires the study of interacting electrons. The formation of the gap by the
Coulomb potential is clearly nonperturbative: one should try an approach based on ansätze and
effective theories, supplemented by numerical analyses. It turns out that the ground states are
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condensates of charges and vortices which have some analogies with superfluids and confined
gauge theories, but are also specific of the two-dimensional parity breaking setting.

2.2. The Laughlin theory

In a remarkable paper [3], Laughlin proposed a class of trial wavefunctions given by

m(z1, z2, . . . , zN) =
N∏

i<j=1

(zi − zj )
m e− 1

2

∑N
i |zi |2 , (6)

with N being the number of electrons and m an integer parameter. Hereafter we set the magnetic
length � = 1. The wavefunctions (6) describe spin-less electrons in the lowest Landau level:
m must be odd, m = 2k +1, for antisymmetry of fermions. In order to determine the properties
of these states, Laughlin used the analogy with a two-dimensional plasma, as it follows. The
determination of the one-particle density can be reduced to the analysis of the two-dimensional
statistical model of charges defined by

Zplasma = ‖m‖2 =
∫ N∏

i=1

d2zi e−βHplasma ,

Hplasma = m

N∑
i=1

|zi |2 − m2
N∑

i<j=1

log|zi − zj |2.
(7)

In this equation, Hplasma describes a classical plasma of charges in a uniform background at
temperature β = 1/m. Knowing that this plasma is totally screened for small values of m,
Laughlin could argue that the density is uniform and could calculate the gap of excitations. For
constant density, the parameter m can readily be related to the filling fraction by ν = 1/m. Note
that Laughlin’s wavefunctions vanish as (zi − zj )

m when any two particles i and j approach
each other: namely, the amplitude for nearby particles is very small and the expectation value
of the Coulomb energy is consequently reduced. This is a rather successful property from the
variational point of view, since other wavefunctions with same average density do have this
feature. Numerical experiments show that the Laughlin wavefunction is actually very close to
the exact ground state for several short-range repulsive interactions [1, 3, 16].

Laughlin also proposed the wavefunctions of the low-energy quasi-holes excitations: they
are localized density deformations,

qh = (η; z1, . . . , zN) =
N∏

i=1

(η − zi)

N∏
i<j=1

(zi − zj )
2k+1 e− 1

2�2

∑
i |zi |2 , (8)

with η being the position of the vortex (figure 3). To calculate the charge of the quasi-hole,
one can use the plasma analogy (7):

‖qh‖2 =
∫ N∏

i=1

d2zi e−β(m
∑

i |zi |2−m2∑
i<j log|zi−zj |2−m

∑
i log|zi−η|). (9)

Comparing (9) with (7), we observe that the electrons feel the presence of a charge 1/m at the
point z = η: thus, the quasi-holes have fractional charge Qqh = e/m [3].

In the wavefunction for two quasi-holes,

2qh(η1, η2; z1, . . . , zN) = (η1 − η2)
1

2k+1

∏
i

(η1 − zi)
∏

i

(η2 − zi)m, (10)

5



J. Phys. A: Math. Theor. 42 (2009) 304006 A Cappelli and I D Rodriguez

Figure 3. Schematic plot of the density of the electron fluid in presence of a quasi-hole at z = η.

Laughlin introduced the term (η1 − η2) raised to a fractional power, that is necessary for
charge equilibration in the plasma (9); he assumed a holomorphic dependence as for the
electron coordinates [17]. If we rotate one quasi-hole around the other, we obtain

2qh((η1 − η2) → eiπ (η1 − η2)) = ei π
2k+1 2qh(η1, η2). (11)

Therefore, the wavefunction acquires a non-trivial phase under exchanges of excitations: the
quasi-holes have ‘fractional statistics’, θ

π
= 1

2k+1 . This is a long-range, topological interaction
of vortices, that is allowed in parity breaking two-dimensional systems [17]. The fractional
charge and statistics of excitations are confirmed by the effective field theory descriptions to
be discussed later. The fractional charge has been observed in experiments of quasi-particle
tunneling [4]; the fractional statistic has not been detected directly but there are indirect
confirmations [1].

2.3. The Jain interpretation of the fractional quantum Hall effect

In figure 1, one finds stable plateaux at other filling fractions that are nicely accounted by the
series ν = n/(2nk ± 1) with n > 1. The phenomenological theory due to Jain explains them
as follows: the argument starts by observing that the inverse filling,

1

ν
= Nφ

N
= ±1

n
+ 2k, (12)

is equal the number of fluxes per electron. Imagine that it is possible to bound an even number
of fluxes, i.e. 2k, to each electron, to form a new quasi-particle called ‘composite fermion’.
(Note that an even number of flux quanta yield an integer Aharonov–Bohm phase and keeps
the fermionic statistics). When 2k fluxes are attached to each electron, the same number of
fluxes is removed from the external magnetic field: therefore, the filling fraction of the system
of composite fermions is given by

1

ν∗ = N� − 2kN

N
= 1

ν
− 2k = ±1

n
, B� = B − 2k2πρ0, (13)

corresponding to an integer QHE. The reduced magnetic field felt by the new particles is given
by B�. This is indeed observed: many experiments confirm the existence of weakly interacting
excitations feeling the reduced magnetic field, i.e. behaving as Jain’s composite fermions [1].
The incompressibility of the fractional QHE is explained by Jain as due to the equivalence
between the system of electrons with ν = n/(2nk + 1) and the integer QHE of composite
fermions with ν� = n.

Following the Jain argument, the flux attachment is clear in the form of the Laughlin
wavefunction (ν� = 1): the factor �N

i<j (zi − zj )
2k yields the Aharonov–Bohm phase of 2k

flux quanta to any electron, and the rest is the wavefunction of the filled first Landau level.

6
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In the general case of ν = n/(2nk + 1), the ground-state wavefunctions proposed by Jain on
the basis of his equivalence are

2k+ 1
n
(z1, . . . , zN) =

N∏
i<j

(zi − zj )
2k 1

n
(z1, . . . , zN), (14)

with 1/n(z1, . . . , zN) being the wavefunctions with n completely filled levels (Slater
determinants). The Jain wavefunctions (14) have been confirmed by comparison with
numerical results of exact diagonalization of the Hamiltonian with Coulomb interaction [5].
The fillings ν = n/(2nk − 1) are also described by (14) with the charge-conjugate term
1/n → 1/n.

The Jain scheme also provides excellent approximations for the quasi-holes and quasi-
particles excitations [5]. For instance, a quasi-particle in the origin for the Jain state with
ν = n/(2nk + 1) is given by

qp;2k+ 1
n
(z1, . . . , zN) =

N∏
i<j

(zi − zj )
2kqp; 1

n
(z1, . . . , zN), (15)

where qp;1/n(z1, . . . , zN) corresponds to the wavefunction of n filled Landau levels and one
electron in the first orbital of the (n + 1)th Landau level. The corresponding localized density
has an excess of charge at the origin of the droplet.

2.4. Fermion Chern-Simons field theory

Among the effective field theories that have been proposed to describe the fractional QHE, we
recall the theory of non-relativistic fermions coupled to the Abelian Chern–Simons ‘statistical’
interaction, that has been developed by Fradkin and Lopez [6] and others [7]. The action can
be schematically written as

S = κ

4π

∫
εμνρaμ∂νaρ +

∫
Jμaμ + Sfermion. (16)

Consider the Gauss law of this theory:

j0(	x) = − κ

2π
B(	x) = − κ

2π
εij ∂iaj (	x), (17)

where B is the ‘statistical’ magnetic field and κ is the Chern–Simons coupling constant. At
quantum level, this is an operator constraint which selects the physical space of states. These
are charge-flux composites: every particle with unit electric charge carries a magnetic charge
equal to 2π/κ . The wavefunctions for these composite particles exhibit Aharonov–Bohm
effects changing the statistics. Therefore a fermion coupled to a Chern–Simons gauge field
behaves like an anyon with a statistical angle θ/π = 1/κ , measured with respect to the Fermi
statistics [6]. If κ = 1/2k, where k is an integer, then θ/π = 2k and the composite states are
still fermions.

A ground state with uniform density 〈j0(z)〉 = ρ̄ implies a constant field:

〈B〉 = −2πρ

κ
= −2k2πρ0, 〈E〉 = 0. (18)

Equation (18) shows that, within the mean field approximation, the effect of the statistical
gauge field is to change the effective flux experienced by the fermionic excitations. The
effective magnetic field is Beff = B + 〈B〉 = B − 2κ2πρ0, in agreement with Jain’s
argument (13).

7
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The uniform effective magnetic field Beff defines a new set of effective Landau levels.
Each level has a degeneracy equal to the total number of effective flux quanta Neff and the
separation between levels is the effective cyclotron frequency ωeff = |Beff|/m. Similarly,
there is an effective cyclotron radius �eff . It is easy to see that the mean-field approximation
(uniform density) (18) is self-consistent only if the fermions fill exactly an integer number n
of effective Landau levels. This reproduces Jain’s theory: the fractional QHE is the integer
QHE of a system of electrons dressed by an even number of flux quanta. The allowed filling
fractions are those obtained by Jain: ν = n/(2nk ± 1) [6]. Further results of this approach are
reviewed in [18].

Let us mention for completeness the effective field theory approaches based on (1 + 1)-
dimensional conformal field theories. As originally observed by Wen [19], a droplet of
incompressible fluid possess low-energy massless chiral excitations at the edge, that can
be described by conformal field theories with U(1) current, also called chiral Luttinger
liquid theories, and their generalizations. These theories of the QHE have been extensively
developed in the last 20 years and can describe the low-energy physics occurring in conduction
experiments [1, 19, 20]. In this approach, the formation of the incompressible fluid is assumed
and cannot be derived, since the dimensional reduction is only possible for these specific
states; actually, there is a different conformal field theory for each plateaux, whose form
can be inferred by the properties of excitations and other data. In the following, we deal
with (2 + 1)-dimensional effective theories that could explain the formation of incompressible
ground states.

3. Semiclassical incompressible fluid and noncommutative Chern–Simons theory

In this section we introduce the effective theories of the fractional QHE based on matrix
degrees of freedom, equivalent to noncommutative field theories. The subject was initiated by
Susskind in 2001, who observed the analogies between the QHE and the physics of D-branes
in string theory [8, 21]. We shall find that the matrix d.o.f. have associated a gauge field and
their Gauss law provides another realization of Jain’s flux attachment to particles (13). The
description of the QHE by matrix theories is far less developed than the fermion Chern–Simons
theory, but there are some nice features like the explicit relation with wavefunctions; in our
opinion, the matrix theories could provide another view on the physics of composite fermions.

We start by reviewing Susskind’s work [8], who observed that the semiclassical limit
of noncommutative Chern–Simons field theory could describe incompressible fluids in high
magnetic field with Laughlin’s filling fractions [8]. Consider N first-quantized electrons with
two-dimensional coordinates Xa

α(t), a = 1, 2, α = 1, . . . , N , placed in a strong magnetic
field B, such that their action can be projected to the lowest Landau level [22],

L = eB
2

N∑
α=1

εabX
a
αẊb

α. (19)

We now consider the limit of the particle forming a continuous fluid:
	Xα(t) → 	X(	x, t), 	X(	x, t = 0) = 	x, (20)

where 	x are the coordinates of an initial, reference configuration of the fluid. The resulting
fluid mechanics is in the Lagrangian formulation, because the field 	X(	x) follows the motion
of the fluid [23]. For incompressible fluids, the constraint of constant density, ρ( 	X) = ρo, can
be written in terms of Poisson brackets {·, ·} of the 	x coordinate as follows:

ρo = ρ(	x) = ρo

∣∣∣∣∂ 	X
∂	x
∣∣∣∣ = ρo

2
εab{Xa,Xb}. (21)

8
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This constraint can be added to the Lagrangian by using the Lagrange multiplier A0,

L = eBρo

2

∫
d2x[εabX

a(Ẋb − θ{Xb,A0}) + 2θA0]; (22)

in this equation, we introduced the constant θ ,

θ = 1

2πρo

, (23)

that will later parameterize the non-commutativity.
The Lagrangian (22) is left invariant by reparametrizations of the 	x variable with unit

Jacobian, the area-preserving diffeomorphism, also called w∞ transformations [15]: they
correspond to changes of the original labels of the fluid at t = 0 (cf equation (20)) [8, 23].
The w∞ symmetry can be put into the form of a gauge invariance by introducing the gauge
potential 	A, as follows:

Xa = xa + θεabAb(x), (24)

and by rewriting the Lagrangian (22) in the Chern–Simons form:

L = − k

4π

∫
d2x εμνρ

(
∂μAνAρ +

θ

3
{Aμ,Aν}Aρ

)
, (25)

where Aμ = (A0, Aa) is the three-dimensional gauge field. The coupling constant k
parameterizes the filling fraction of the semiclassical fluid:

ν(cl) = 2πρo

eB
= 1

eBθ
= 1

k
. (26)

Based on the result (25), Susskind conjectured that the non-commutative (Abelian) Chern–
Simons theory could be the complete theory going beyond the continuous fluid approximation,
i.e. accounting for the granularity of the electrons. Its action is [24]

LNCCS = − k

4π

∫
d2x εμνρ

(
∂μAν � Aρ − 2i

3
Aμ � Aν � Aρ

)
, (27)

involving the Moyal star product:

(F � G)(x1, x2) = F(x1, x2) e
iθ
2 (

←−
∂x1

−→
∂x2 −←−

∂x2
−→
∂x1 )G(x1, x2). (28)

Actually, the two Lagrangians (27) and (25) agree to leading order in θ , i.e. for dense fluids. In
the new Lagrangian (27), the gauge fields with Moyal product have become Wigner functions
(see the next section) of the noncommuting operators, x̂1, x̂2, the former spatial coordinates:

[̂x1, x̂2] = x1 � x2 − x2 � x1 = iθ. (29)

The corresponding quantization of the area can be thought of as a discretization of the fluid
(at the classical level), with the minimal area θ allocated to a single electron (cf (26)).

3.1. Matrix representation of the noncommutative Chern–Simons theory

Every noncommutative theory is equivalent to a matrix theory, with matrices of infinite order
(N → ∞) [24]; in particular, the noncommutative Chern–Simons theory (27) is equivalent to
the matrix theory [25]:

L = B

2
Tr[εijXi(t)DtXj (t) + 2θA0(t)], (30)

where now X1(t), X2(t) and A0(t) are N ×N matrices (N → ∞) and the covariant derivative
is DtXj = Ẋj − i[A0, Xj ] , j = 1, 2.

9
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The proof of the correspondence is simpler if we go from the matrix (30) to the
noncommutative theory (27). Observe that the Gauss law of the Lagrangian (30) implies
the following noncommutative condition on the matrices:

[X1, X2] = iθI, (31)

with I being the identity matrix. This algebra only admits ∞-dimensional matrix
representations: consider a particular, ‘ground state’ solution, X = x̂i , and write the general
solutions as follows:

Xi = x̂i + θεijAj (x̂
i), (32)

where Ai are N × N matrices of ‘fluctuations’ (N → ∞). Note that these matrices can
be expressed in terms of finite sums of products eipx̂1

eiqx̂2
, i.e. they can be thought of

being functions of x̂i . Replacing (32) in (30) and expressing the derivative as commutators,
[x̂i , f (x̂1, x̂2)] = iθεij ∂jf , we find:

L = B
2

Tr{−θȦ1(x̂1 + θA2) + iA0[x̂1 + θA2, x̂2 − θA1]

− θȦ2(x̂2 − θA1) − iA0[x̂2 − θA1, x̂1 + θA2]} + BθA0

= Bθ2

2
Tr(A1Ȧ2 − Ȧ1A2 + 2A0(∂2A1 − ∂1A2) + 2iA0[A1, A2]), (33)

or in covariant notation,

L = Bθ2

2
Tr

[
−εμνρAμ∂νAρ +

2i

3
εμνρAμAνAρ

]
. (34)

In the limit N → ∞ the matrix variables Ai are mapped into smooth functions of the
noncommutative coordinates Ai(x̂j ). Also in this limit we can identify θTr → 1

2π

∫
dx̂1dx̂2,

and we obtain the following Lagrangian:

L = 1

4πν

∫
dx̂1 dx̂2

(
−εμνρAμ∂νAρ +

2i

3
εμνρAμAνAρ

)
. (35)

In this Lagrangian, the fields Ai still obey the matrix algebra, while in (27) they are functions.
The two formulations are related by expressing matrices as Wigner c-number functions that
obey the Moyal product algebra [15].

Let us recall that any operator F̂ (x̂1, x̂2) in the Weyl ordering :: (most symmetric in x̂1, x̂2)
can be associated with a phase space function F(x1, x2) as follows:

: F̂ (x̂1, x̂2) :=
∫

dx1 dx2F(x1, x2) : δ(x̂1 − x1)δ(x̂2 − x2) :

=
∫

dx1 dx2
dα

2π

dβ

2π
F(x1, x2) eiα(x̂1−x1)+iβ(x̂2−x2)

= F

(
−i

∂

∂α
,−i

∂

∂β

)
eiαx̂1+iβx̂2 |α=β=0. (36)

One finds by inspection that the product of two operators F̂ and Ĝ corresponds to the Moyal
product (28) of the corresponding Wigner functions, : F̂ : : Ĝ :=: Ĥ :,H(x1, x2) =
(F � G)(x1, x2). In particular,∫

dx̂1 dx̂2 : F̂ (x̂1, x̂2) : : Ĝ(x̂1, x̂2) :=
∫

dx1 dx2(F � G)(x1, x2). (37)

Therefore, the matrix Lagrangian (35) becomes the noncommutative Chern–Simons theory
(27) (within the Weyl ordering).

Finally, we recall that another route to obtain the Chern–Simons matrix theory (30),
that emphasizes the discrete particle aspects of the fluid is given by a matrix regularization
proposed by Goldstone and Hoppe [26].
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3.2. The Chern–Simons matrix model

The noncommutative Chern–Simons Lagrangian (27) and its matrix model formulation (30)
both imply infinite degrees of freedom: therefore, Susskind’s theory applies to an infinite
system. Instead, the fractional QHE is a system with a boundary and a finite number of
particles. Polychronakos introduced this feature [9] by modifying Susskind’s action (30) as
follows:

SCSMM =
∫

dt
B
2

Tr
{
εab(Ẋa + i[A0, Xa])Xb + 2θA0 − σX2

a

}
+
∫

dt ψ †(iψ̇ − A0ψ). (38)

Two new terms are present: the first is a quadratic potential that confines the eigenvalues, i.e.
keep the particles localized in the plane, with σ = O(B/N); the second term is a ‘boundary’
N-dimensional complex vector ψ that transforms in the fundamental representation of the
gauge group U(N). The Gauss law is now given by

G = −iB[X1, X2] + ψψ † − BθI = 0. (39)

Observe that the trace of (39) implies

ψ †ψ = NBθ, (40)

that can be realized with N ×N dimensional matrices. The action (38) thus defines the Chern–
Simons matrix model, a gauge theory with U(N) symmetry, Xa → UXaU

†, ψ → Uψ and
A0 → UA0U

† − iU dU †

dt
. Under a gauge transformation the action (38) is not invariant, but it

yields a winding number, S → S − iBθ
∫

dtT r[U †U̇ ]; this requires the quantization Bθ = k

[27], leading to the Laughlin filling fractions (cf (26)). Note that the equation of motion for ψ

in the A0 = 0 gauge read, ψ̇ = 0, showing that this is an auxiliary field with trivial dynamics;
it can take the constant value ψ = √

NBθ |v〉, with |v〉 being a vector of unit length [9].

3.3. Covariant quantization

In the A0 = 0 gauge, the Hamiltonian of the Polychronakos theory (38) corresponds to
(N2 + N) particles in the lowest Landau level with coordinates Xnm and ψn. It can be
shown that, at quantum level, the Gauss law (39) implies gauge invariant states of the form
(X,ψ) = e−Tr(X̄X)/2−ψ†ψ/2�(X,ψ), with �(X,ψ) a singlet of the gauge group U(N) made
by polynomials of Xnm and ψn, being of order Nk in ψn due to (40) [10]. A basis of states is
given by

�(X,ψ) = �{n1
1,...,n

1
N } . . . �{nk

1,...,n
k
N },

�{nj

1 ,...,n
j

N } = εi1...iN (Xn
j

1 ψ)i1 . . . (Xn
j

N ψ)iN , 0 � n
j

1 < n
j

2 < · · · < n
j

N . (41)

These states are eigenstates of the angular momentum J with eigenvalues J = NX, where
NX is the number of matrices X appearing in �(X,ψ). Since the Hamiltonian of the theory
is proportional to the angular momentum, H = (2ω/B)J , the states (41) are also eigenstates
of the Hamiltonian. The ground state of the theory is [10]

�k−gs = [εi1...iN ψi1(Xψ)i2 . . . (XN−1ψ)iN ]k, (42)

corresponding to the lowest value of the angular momentum (lower order polynomials vanish
by antisymmetry of the εi1...iN tensor).

If we now diagonalize the matrix X by the similarity transformation, X = V −1�V , with
� = diag(λ1, . . . , λN), we obtain

�k−gs(V
−1�V,ψ) = C

∏
1�n�m�N

(λn − λm)k. (43)

11
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The quantity C appears in all the physical states and can be neglected in the present discussion
[11].

Therefore we have obtained the Laughlin wavefunction as the ground state of the Chern–
Simons theory, with electron coordinates identified with the eigenvalues of X. This is a
very important result of the Chern–Simons matrix theory; that of reproducing the Laughlin
wavefunction from gauge invariance of the states in presence of the ‘background charge’ θ .
(Note that the filling fraction is ν = 1/(k + 1): the shift from the classical value (26) is due to
a Vandermonde factor coming from the integration measure [9]).

Let us now discuss the excitations over the ground state (42). In [10], it was found the
‘bosonic’ basis of states,

�(X,ψ) =
∑
{mk}

Tr(Xm1) · · · Tr(Xmk )�k−gs . (44)

for any positive integers {m1, . . . , mk}. These states have �J = r = ∑k mk . For r = O(1),
their energy given by the boundary potential, �E = σ�J = O(rB/N) is very small:
they are the edge excitations of the droplet of fluid described by conformal field theories
[15, 19, 20].

The matrix model also possess localized density deformations that are analogs of the
quasi-hole excitations of the Laughlin state. For example, the state �{n1,...,nN } in equation (41),
with {n1, n2, . . . , nM} = {1, 2, . . . , N}, corresponds to moving one electron from the interior
of the Fermi surface to the edge, causing �J = O(N) and thus a finite gap �E = O(B). On
the other hand, the quasi-particle excitation cannot be realized in the Chern–Simons matrix
model [9, 12, 14], because excitations with angular momentum lower than (42) are zero due
to the antisymmetry of the εi1...iN tensor. Similarly, the Jain states ν = n/(2nk + 1) are not
naturally obtained [28].

In conclusion, we have shown that the Chern–Simons matrix model reproduces the
Laughlin wavefunctions as ground states. Nevertheless, the theory has some drawbacks
[13]: there are no quasi-particle excitations [9], and the Jain states cannot be described [28].
Moreover, the measure of integration w.r.t. the eigenvalues λi differs from that of electrons
in the lowest Landau level, owing to the noncommutativity of matrices. It can be shown that
the ground-state properties of the matrix theory and of the Laughlin state only agree at long
distances [11, 29]. Owing to the inherent noncommutativity, it is also difficult to match matrix
observables with electron quantities of the quantum Hall effect [30].

3.4. Jain composite fermion transformation

We would like to stress that the Chern–Simon matrix model provides another realization of
the Jain composite-fermion transformation (see section 2.3). For k = 0, the matrix theory
reduced to the eigenvalues λa is equivalent to a system of free fermions in the lowest Landau
level, i.e. to ν∗ = 1 [11, 29]. This fermionic picture is a general feature of one-dimensional
matrix models [31].

In the presence of the θ background, the noncommutativity of matrix coordinates (39)
forces the electrons to acquire a finite area of order θ , leading to the (semiclassical) density
ρo = 1/2πθ (23). Using this formula of the density and the quantization of Bθ , we reobtain
the Jain relation (13) for flux attachment,

Bθ = k ∈ Z → B = k2πρo. (45)

Given that noncommutativity is expressed by the Gauss law of the matrix theory, we
understand that the mechanism for realizing the Jain transformation is analogous to that of the
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Lopez–Fradkin theory (cf (18), section 2.4), but it is expressed in terms of different variables.
However, the higher Landau levels are not possible in the Chern–Simons matrix model.

4. Maxwell–Chern–Simons matrix gauge theory

In this section we introduce and analyze the Maxwell–Chern–Simons matrix theory [12] with
the aim of improving the previous matrix theory. The action is

S =
∫

dt Tr

[
m

2
(DtXi)

2 +
B
2

εijXiDtXj +
g

2
[X1, X2]2 + BθA0

]
− i
∫

ψ †Dtψ. (46)

It involves the same N × N Hermitian matrices, Xi(t) and A0(t), and the auxiliary vector
ψ(t), but includes two new terms with respect to Polychronakos theory (38): an additional
kinetic term quadratic in time derivatives and a potential V = −gTr[X1, X2]2, parameterized
by the positive coupling constant g. All the terms in the action are fixed by the gauge principle
because they are obtained by dimensional reduction of a gauge theory. Indeed, the action
(46) is the bosonic part of the low-energy effective theory of a stack of N D0-branes [32] that
has been discussed in the literature of string theory [21]. In particular, D0-branes have been
proposed as fundamental degrees of freedom in string theory [33].

4.1. Low-energy effective action of Dp-branes in string theory

Let us briefly review Witten’s derivation of the effective low-energy action of N Dp-branes [34].
Consider ten-dimensional Minkowski space, with time x0 and space x1, . . . , x9 coordinates,
respectively. A p-brane is an object that modifies the boundary conditions of open strings: it
introduces Dirichlet boundary conditions in (9 − p) directions, as follows:

Xp+1(σ, t) = · · · = X9(σ, t) = 0 (Dirichlet), (47)

∂σX1(σ, t) = · · · = ∂σXp(σ, t) = 0 (Neumann). (48)

Due to (47), the zero modes Xj with j > p are frozen, and the massless particles are functions
of X1, . . . , Xp only. The massless bosons Ai(X

s), i, s = 0, . . . , p, propagate as U(1) gauge
bosons on the p-brane, while the other components become scalars fields on the p-brane,
φj (X

s), j > p. The vertex operators for insertions of spin-1 fields in string theory are given
by

VA =
p∑

i=0

Ai(X
s)∂τX

i, Vφ =
∑
j>p

φj (X
s)∂σXj . (49)

For φj = constant, the boundary integral of Vφ implies the change Xj → Xj + φj for
j > p: thus the scalars φj , j > p can be interpreted as the coordinates of the p-brane. The
theory on the (p + 1)-dimensional brane world-volume is naturally the ten-dimensional U(1)

supersymmetric gauge theory dimensionally reduced to (p + 1) dimensions.
Bound states of N parallel Dirichlet p-branes can be described by the low-energy limit

when the branes are nearby. We consider the case of two parallel Dirichlet p-branes, one at
Xj = 0, and the other at Xj = aj (j > p). The branes are connected by strings: they can
start and end on the same brane and give a U(1) × U(1) gauge theory (with one U(1) living
one each p-brane), or they can start in the first brane and end in the second (and vice versa).
In this case, the strings have U(1) × U(1) charges. The ground state of this configuration has
an energy T |a|, with T and |a| being the tension and length of the string, respectively. When
|a| → 0 the charged vector bosons become massless and the U(1) × U(1) gauge symmetry

13
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is enlarged to a U(2) symmetry. In the same way, N coincident parallel branes yield a U(N)

gauge symmetry on the p-brane. The field content in the effective action is given by the U(N)

gauge field Aj(X
s, t), with s, j = 1, . . . , p , and the scalar fields φj (X

s, t), withj > p , in
the adjoint representation of U(N), i.e. they are all N × N matrices.

The reduction to (p + 1) dimensions of the bosonic sector of the theory is obtained as
follows. From the Lagrangian,

LYM = − 1

4g2
Tr(FμνFμν), (50)

we simplify the commutators in Fμν = [Dμ,Dν] by dimensional reduction and identify the
earlier fields, leading to

L′
YM = − 1

4g2
Tr

⎛⎝ p∑
r,s=0

F rsFrs −
p∑

s=1

∑
j>p

DsφjD
sφj +

∑
i,j>p

[φi, φj ]2

⎞⎠ . (51)

In the p = 0 case we have D0-branes, that are nonrelativistic point particle with matrix
variables and one-dimensional gauge symmetry. In (2+1) dimensions, (51) becomes the
Maxwell–Chern–Simons theory (46), apart from the Chern–Simons kinetic term: as shown in
[21], this can be obtained by adding a configuration of higher D-branes that creates a magnetic
field for the D0-branes.

4.2. Covariant quantization of Maxwell-Chern-Simons theory

In this section we quantize the Maxwell–Chern–Simons matrix theory (46) [12, 35]. The
canonical momenta are given by the Hermitian matrices:

�i = δS

δẊT
i

= DtXi − B
2

εijXj , (52)

and the vector χ = δS/δψ̇ = −iψ †. The Hamiltonian is

H = Tr

[
1

2

(
�i +

B
2

εijXj

)2

− g

2
[X1, X2]2

]
. (53)

The Gauss law constraint now reads

G = 0, G = i[X1,�1] + i[X2,�2] − BθI + ψ ⊗ ψ †. (54)

As in Chern–Simons theory, G generates U(N) gauge transformations on Xi and ψ at the
quantum level, and requires the physical states to be U(N) singlets. We now quantize all the
2N2 matrix degrees of freedom Xi

ab and later impose the Gauss law as a differential condition
on wavefunctions. It is useful to introduce holomorphic coordinates:

X = X1 + iX2, X = X1 − iX2,
(55)

� = 1
2 (�1 − i�2), � = 1

2 (�1 + i�2),

with the bar denoting the Hermitian conjugate of classical matrices, keeping the dagger for
the quantum adjoint.

The Hamiltonian (53) for g = 0 is quadratic and easily solvable: introduce the matrix,

Aab = 1

2�
Xab + i��ab, (56)

and its adjoint A†. Owing to the canonical commutators, they obey the algebra of N2 harmonic
oscillators: [[

Aab,A
†
cd

]] = δadδbc, [[Aab,Acd ]] = 0. (57)
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In this following, the double brackets describe quantum commutators while the single ones
are kept for the matrix algebra; note also that A† is the adjoint of A both as a matrix and a
quantum operator. The Hamiltonian can be expressed in terms of A and A† as follows:

H = B Tr(A†A) +
B
2

N2 +
g

8
Tr[X̄,X]2. (58)

In the term Tr(A†A) = ∑
ab A

†
abAba , one recognizes N2 copies of the Landau-level

Hamiltonian corresponding to N2 two-dimensional ‘particles’ with phase-space coordinates,
{�ab,Xab} and {�̄ab, X̄ab}, a, b = 1, . . . , N . The one-particle state are similarly
characterized by another set of independent oscillators corresponding to angular momentum
excitations, that are described by the matrix B = X̄/2� + i�� and its adjoint B†, obeying the
algebra: [[

Bab, B
†
cd

]] = δadδbc, [[Bab, Bcd ]] = 0. (59)

The total angular momentum of the N2 ‘particles’ can be written in the U(N) invariant form

J = 1

i
Tr(X̄�̄ − X�) = Tr(B†B − A†A). (60)

For large values of the magnetic field B, the reduction of the theory (46) to the lowest
Landau is obtained by imposing Aab ≈ 0,∀a, b: the theory becomes the previously studied
Chern–Simons matrix model (38), because the quadratic kinetic term vanishes and the potential
reduces to a constant due to the Gauss law.

5. Matrix ground states at g = 0

5.1. Jain states by projections

The gauge invariant states can be written as

 = e−Tr(XX)/2−ψψ/2�(X,X,ψ), (61)

where �(X,X,ψ) is again a U(N) singlet made of matrices X,X and Nk components of the
vector ψ . The general solutions (61) are similar to those obtained in Chern–Simons theory
with the difference that now the polynomial part also depends on the X matrices; for example,

�(X,X,ψ) = (εi1i2....inψi1(XXψ)i2 . . . .(XXXXX . . . ψ)in)
k. (62)

It is better to express these polynomials in terms of the variables A and B (cf section 4.2):
from the commutation relations (57) and (59), the energy and momentum eigenstates can
easily be obtained by applying the A

†
ab (56) and B

†
ab operators to the empty ground state

o = exp(−TrXX/2 − ψψ/2). Their energy E = BNA and momentum J = NB − NA

are expressed in terms of the number of A† and B† operators, NA and NB , respectively. The
wavefunctions are rewritten as

 = e−TrXX/2−ψψ/2�(B,A,ψ), E = BNA, J = NB − NA, (63)

where B = X−∂/∂X and A = X−∂/∂X commute among themselves, [[Aab, Bcd ]] = 0, and
can be treated as c-number matrices. Any polynomial �(B,A,ψ) yields an energy eigenstate
and corresponds in general to a sum of terms (62). Let us remark that for states with constant
density, the angular momentum measures the extension of the ‘droplet of fluid’, such that we
can associate a corresponding filling fraction ν by the formula

ν = lim
N→∞

N(N − 1)

2J
. (64)
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(a) (b) (c)

Nn
2n

1n

Figure 4. Graphical representation of gauge invariant states: (a) general states in the lowest
Landau level (cf equation (41)); (b) and (c), N = 3 examples involving both matrices, B (thin line)
and A (in bold).

The states (63) can be represented graphically as ‘bushes’, as shown in figure 4(a). The
matrices Bab (i.e.,Xab) are depicted as oriented segments with indices at their ends and index
summation amounts to joining segments into lines, as customary in gauge theories. The
matrices Aab are represented by bold segments. The lines are the ‘stems’ of the bush ending
with one ψa , represented by an open dot, and the epsilon tensor is the N-vertex located at the
root of the bush. Bushes have N stems of different lengths: n1 < n2 < · · · < nN . The position
i� of one B on the � th stem, 1 � i� � n�, is called the ‘height’ on the stem. Since two stems
cannot be equal, one obtains a kind of Fermi sea of N ‘one-particle states’ corresponding to the
N strands. However, there are additional degeneracies with respect to an ordinary fermionic
system, because in each stem all possible words of A and B of given length yield independent
states (for large N), owing to matrix noncommutativity, as seen in figure 4(b) and 4(c).

The complete filling of all the available degenerate E > 0 states at g = 0 clearly gives
very dense and inhomogeneous fluids that are incompatible with the physics of the quantum
Hall effect. The matrix degeneracies lead to a density of states that grows exponentially with
the energy; this is a characteristic of string theories that is not suitable for the Hall effect
[33]. On the other hand, for g > 0 the potential Tr[X,X]2 in the Hamiltonian (58) constraints
matrix noncommutativity and eventually eliminates the degeneracy: at g = ∞, this is not
present and the theory can describe a physical electron system, as shown in section 6.

Given that the g > 0 theory is difficult to solve, in [12] we introduced a set of projections
that limit the matrix degeneracy at g = 0 and are explicitly solvable. These projections are
expressed by the following constraints on the wavefunction,

(Aab)
m = 0 −→

(
∂

∂Aab

)m

�(A,B,ψ) = 0, ∀a, b, (65)

for a given value of m. The m = 1 case is the lowest Landau level discussed before with
no A dependence, while m taking successive values m = 2, 3, . . . gradually allow larger A

multiplicities and thus matrix degeneracies. Note that in equation (65), each matrix component
Aab is raised to the mth power, without index summation: the condition is nevertheless gauge
invariant and admits an equivalent manifestly invariant form that is discussed later.

The results of [12] were rather interesting: not only the projections (65) allow
homogeneous ground states suitable for describing quantum Hall fluids, but also they precisely
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occur in the Jain pattern of filling fractions, ν = m/(mk + 1), and their derivation repeats
step-by step the Jain ‘composite fermion’ construction [5].

Let us recall the main points of the analysis. Consider first the projection (65) for m = 2
and choose k = 1: the solutions are polynomials that are at most linear in each component
Aab. Let us imagine that one or more A matrices are present at points on the bush as in figure 4.
The differential operator (65) acts by sequentially erasing pairs of bold lines on the bush, each
time detaching two strands and leaving four free extrema with indices fixed to either a or b,
with no summation on them. For example, when acting on a pair of A located on the same
stem, it yields a non-vanishing result: this limits the bushes to have one A per stem at most.
The A2 ≈ 0 conditions can be satisfied if cancellations occur for pairs of A on different stems,
as it follows:(
Ab

a

)2
� = · · · + ε...i...j ...(· · · MiaNja · · · V bWb) + · · · , (a, b fixed). (66)

This expression vanishes for M = N due to the antisymmetry of the epsilon tensor. The
general solution of (65) is given by bushes involving one A per stem at most (max N matrices
in total), with all of them located at the same height on the stems [12]. In formulae,

�{n1,...,n�;p;n�+1,...,nM } = εi1...iN

�∏
k=1

(B
nk

ψ)ik

N∏
k=�+1

(B
p
AB

nk
ψ)ik , 0 � n1 < · · · < n�,

0 � n�+1 < · · · < nN. (67)

If the matrices A,B were diagonal, these states would be Slater determinants of ordinary
Landau levels. The matrix states have further degeneracies by commuting A,B pairs: however,
commutations are severely limited in the solution (67), only the global p dependence is allowed.
This shows how the A2 ≈ 0 projection works in reducing matrix degeneracies.

The ground state in the A2 ≈ 0 theory with finite-box boundary conditions is the lowest
J states of the form (67): it corresponds to homogeneous filling all the allowed states in the
first and second Landau levels with N/2 ‘gauge invariant particles’ each, and reads

�1/2,gs = εi1...iN

N/2∏
k=1

(B
k−1

ψ)ik

N/2∏
k=1

(AB
k−1

ψ)iN/2+k
, (68)

with angular momentum J = N(N − 4)/4. This state is non-degenerate due to the vanishing
of the p parameter in (67). It has filling fraction ν∗ = 2, assuming homogeneity of its density,
to be shown later.

The ground states for k > 1 are products of k bushes: they obey the constraint A2 ≈ 0
provided that the two derivatives always vanish when distributed over the bushes. Given one
bush of type (68), obeying A2�1/2,gs = 0, one can form the state

�k+1/2,gs = �k−1,gs�1/2,gs, (69)

where the other (k−1) bushes satisfy A�k−1,gs = 0 and actually are Laughlin’s one (41). Using
(64), the angular momentum of this state corresponds to the filling fraction 1/ν = k + 1/2.

We thus find the important result that the A2 ≈ 0 projected Maxwell–Chern–Simons
theory possesses non-degenerate ground states that are the matrix analogs of the Jain states
obtained by composite-fermion transformation at ν∗ = 2, i.e. 1/ν = 1/ν∗ + k. The matrix
states (69) and (68) would actually be exactly equal to Jain’s wavefunctions, if the A,B

matrices were diagonal: the ψ dependence would factorize and the matrix states reduce to the
Slater determinants of the Jain wavefunctions [5, 16] (cf (14) in section 2.3).

The correspondence extends to the whole Jain series: the other ν∗ = m non-degenerate
ground states are respectively obtained in the theories with Am ≈ 0 projections. They read

�k+1/m,gs = �k−1,gs�1/m,gs, (70)
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where,

�1/m,gs = εi1...iN

N/m∏
k=1

[(B
k−1

ψ)ik (A B
k−1

ψ)ik+N/m
· · · (Am−1

B
k−1

ψ)ik+(m−1)N/m
]. (71)

In conclusion, in [12] we found that the ground states of the properly projected Maxwell–
Chern–Simons matrix theory reproduce the Jain pattern of the composite fermion construction
[5]; the matrix states are non-degenerate for specific values of the density that are controlled
by the boundary potential [12]. These results indicate that the Jain composite fermions have
some relations with the D0-brane degrees of freedom and their underlying gauge invariance.
Both of them have been described as dipoles: according to Jain [5] and Haldane-Pasquier
[36], the composite fermion can be considered as the bound state of an electron and a hole (a
vortex in the electron fluid). On the other hand, matrix gauge theories, and the equivalent non-
commutative theories [33], describe D0 branes that are point-like dipoles in the low-energy
limit of string theory.

A final remark on the noncommutative matrix coordinates in the Jain and Laughlin state:
the Gauss law (54) can be rewritten in terms of X,X,A,A as follows:

[X,X] +
2

B
[X,A] +

2

B
[A,X] = 2

(
θ − 1

B
ψ ⊗ ψ

)
. (72)

For the Laughlin states in the lowest Landau level, this reduces to coordinates
noncommutativity (39), because A = A = 0; for the Jain states populating higher levels,
there are other terms contributing to noncommutativity besides the matrix coordinates, such
that higher density values are possible.

5.2. Gauge invariant form of the projections

Although the operators (Aab)
m,m = 1, 2, . . . , are not explicitly gauge invariant, their kernel

restricted to gauge invariant states yields gauge invariant conditions, as seen in the previous
discussion. Therefore, the projectors should have manifestly gauge invariant expressions.
In [14], they were found by expressing the conditions Am ≈ 0 in terms of positive-definite
occupation numbers Zab = A

†
abAab (no sum over a, b), and by averaging over their gauge

orbit. For m = 2, the A2 ≈ 0 constraint was shown to be equivalent to Q
g.i.

2 ≈ 0, with

Q
g.i.

2 ∝ (δkiδlj + δkj δli)A
†
ia′A

†
jaAakAa′l . (73)

Upon commuting the operators to bring summed indices close to each other, we finally find
the manifestly gauge-invariant form (disregarding the normalization):

Q
g.i.

2 = Tr(A†AA†A) + (TrA†A)2 − (N + 1)Tr(A†A). (74)

One can check that the action of the gauge-invariant constraint Q
g.i.

2 on bush wavefunctions
is completely equivalent to that of the gauge-variant condition A2 ≈ 0 [12]. The expression
(73) easily generalizes to higher m values [14].

5.3. Semiclassical solutions at g = 0

In this section we review the semiclassical analysis of the g = 0 Maxwell–Chern–Simons
theory: in [14], we found the semiclassical states that correspond to the quantum states with
homogeneous filling and composite-fermion structure (70) of the previous section and some of
their quasi-particle excitations. The motivations for the semiclassical analysis are twofold: on
one side, previous experience [9, 13, 30, 33, 37] with noncommutative field theory has shown
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that the classical fluid dynamics incorporates some properties of the full quantum theory. From
another side, it is known that the Laughlin states in the quantum Hall effect are incompressible
fluids that become semiclassical in the thermodynamic limit N → ∞ [15].

As we showed in section 5.1, the Jain-like ground states (70) involve higher Landau
levels (A �= 0) and have filling fractions ν∗ = 2, 3, . . . (cf (13) in section 2.3). We first note
that these states are characterized by E = O(N) and J = O(N2), thus implying that the
matrix A must have few nonvanishing elements O(1). Indeed, the constraint Am ≈ 0 can be
written in terms of occupation numbers, Zab = AabAab, and limit the semiclassical values
of Aab matrix elements: once summed over each row or column, they can take the values
γ = 0, 1, . . . , m − 1 [14].

We introduce the constraints of the Gauss law and the projection Am ≈ 0 in the
Hamiltonian with Lagrange multipliers � and �a, �

′
b, respectively. Upon variation with

respect to A,B, we obtain the equations of motion:

iȦab = 2Aab − [�,A]ab + Aab(�a + �′
b),

iḂ = −[�,B] + ωB,

G = [A,A] + [B,B] − k + ψ ⊗ ψ = 0, (75)

Za =
∑

b

AbaAab = γ, γ = 0, 1, . . . , m − 1,

Z′
b =

∑
a

AbaAab = γ ′, γ ′ = 0, 1, . . . , m − 1.

The semiclassical ground states correspond to solutions with Ȧ = Ḃ = 0.
Let us first recall the classical ground state with Aab ≈ 0 (lowest Landau level) found by

Polychronakos in the Chern–Simons matrix model [9]: in this case (� = 1), B = X and ψ

are given by

X̄ =
√

k

N−1∑
n=1

√
n|n〉〈n − 1|, ψ =

√
kN |N − 1〉. (76)

(denoting |0〉, . . . , |N − 1〉 the basis vectors [14]). The radius-squared matrix coordinate R2

is diagonal, and is given by

R2 = XX = diag(0, k, 2k, . . . , (N − 1)k). (77)

From the distribution of the eigenvalues in (77), it is clear that this solution implies an uniform
density. In the large-N limit, the filling fraction takes the Laughlin values ν = 1/k according
to formula (64).

In general, the one-particle density of rotation invariant states in matrix models can be
defined in terms of the gauge invariant eigenvalues of R2, as follows (ρ(r) = ρ(r2)/π):

ρ(r2) =
N−1∑
i=0

δ(r2 − σi), σi ∈ Spec(R2). (78)

For semiclassical fluids, this becomes a piecewise continuous function in the limit N → ∞.
A discrete approximation suitable for the continuum limit is [14]

ρ(r2) =
∑

i

ni

σi+1 − σi

δr2,σi
, (79)

involving the Kronecker delta and the ordered set of distinct eigenvalues, σi < σj , i < j , with
multiplicities ni .
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From [9], we also recall the form of the quasi-hole in the origin, in the lowest Landau
level:

X̄ =
√

k

(
√

q|0〉〈N − 1| +
N−1∑
n=1

√
n + q|n〉〈n − 1|

)
, q > 0, (80)

where q is proportional to the charge of the quasi-hole. The R2 eigenvalues are correspondingly
shifted upward by q, causing a dip at the origin.

The semiclassical ground state solution for A2 ≈ 0, leading to the Jain-like ν∗ = 2 ground
state is found by a suitable ansatz to the equation of motions (75). After gauge choice, they
imply that (i) B is again a raising operator as in (76) and (ii) A has only one element 1 in each
row and column, i.e. it is a (partial) permutation matrix. Using these data, the matrix equations
can be reduced to a linear system of O(N/2) conditions leading to the solution (N even):

B =
N/2∑
n=1

√
n(k − 1)|n〉〈n − 1| +

N−1∑
n= N

2 +1

√
n(k + 1) − N |n〉〈n − 1|,

(81)

A =
N
2 −1∑
n=0

∣∣∣∣n +
N

2

〉
〈n|,

with ψ as in (76). In matrix form for N = 4, it reads

B =

⎛⎜⎜⎝
0 0 0 0√

k − 1 0 0 0
0

√
2(k − 1) 0 0

0 0
√

3k − 1 0

⎞⎟⎟⎠ , A =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

⎞⎟⎟⎠ . (82)

This solution has the same energy E = BN/2 of the quantum state (69) and the same angular
momentum J = (k − 1/2)N2/2 + O(N) to leading order. The matrix R2 = (B + A)(B + A)

contains off-diagonal terms from the mixed products: however, these give subdominant
O(1/

√
N) corrections to the eigenvalues as is clear in a simple two-by-two matrix example.

Thus, Spec(R2) = Spec(BB)(1 + O(1/
√

N)).
In figure 5 we plot the densities of the ν∗ = 2 ground state (81), and those of the

corresponding ν∗ = 3, 4 states [14], for N = 400: up to finite-N fluctuations, they show
two-step uniform densities as anticipated. We recall that the same droplet shape is found for
the Jain states (14), before their projection to the lowest Landau level [5].

In [14] we found a simple argument for the equivalence of the semiclassical solutions to
the matrix wavefunction found in section 5 (cf (67)). We evaluated their polynomial parts
�(A,B,ψ) on the classical solution A,B, e.g. (81), corresponding to the leading N → ∞
expectation values. We then found that the resulting polynomial self-consistently match
the single-particle occupancies predicted by the classical solution themselves. These results
confirm the validity of the semiclassical approximation for these matrix ground states.

6. Electrons from D0 branes in the g → ∞ limit

6.1. The matrix theory at g = ∞
In this section we introduce the potential V = −(g/2)Tr[X1, X2]2 in the Hamiltonian (53)
and perform the g → ∞ limit. At the classical level, the V potential suppresses the matrix
degrees of freedom different from the eigenvalues, and projects them out for g → ∞. Using
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Figure 5. Density plots for the matrix ground states with 1/νcl = 1/ν∗ +k, for k = 4 and N = 400:
(a) ν∗ = 2 (81); (b) ν∗ = 3; and (c) ν∗ = 4.

the Ginibre decomposition of complex matrices [31]: X = U(� + R)U , where U is unitary
(the gauge degrees of freedom), � diagonal (the eigenvalues) and R complex upper triangular
(the additional d.o.f.), we find for N = 2:

V = g

8
Tr[X,X]2 = g

4
|r|4 +

g

4
|r(λ1 − λ2)|2, X =

(
λ1 r

0 λ2

)
. (83)

Thus for large g, the variable r is suppressed. For general N, the potential kills all the N(N −1)

degrees of freedom contained in the R matrix.
Let us now discuss the Maxwell–Chern–Simons theory in the g = ∞ limit, i.e. for

R = 0: X and X commute among themselves and can be diagonalized by the same unitary
transformation,

X = U�U, X = U�U, � = diag(λa), [X,X] = 0. (84)

The g = ∞ theory is analyzed following a different strategy from that of section 4: we fix
gauge invariance, solve the Gauss law at the classical level and then quantize the remaining
variables, which are the complex eigenvalues λa and their conjugate momenta pa [35, 38]. We
take the diagonal gauge for the coordinates and decompose the momenta �,�, in diagonal
and off-diagonal matrices, respectively called p and �: X = �,� = p + �,� = p + �. The
Gauss law constraint (54) can be rewritten as

[X,�] + [X,�] = −iBθ + iψ ⊗ ψ,

(λa − λb)�ab + (λa − λb)�ab = −i(kδab − ψaψb). (85)

For a = b, this equation implies |ψa|2 = k for any value of a: for a �= b, it completely
determines the off-diagonal momenta:

�ab = ik

2

λa − λb

|λa − λb|2 , a �= b. (86)

By inserting this back into the Hamiltonian (53), we find that diagonal and off-diagonal terms
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decouple and obtain

Hg=∞ = 2Tr

[(
X

2
− i�

)(
X

2
+ i�

)]

= 2
N∑

a=1

(
λa

2
− ipa

)(
λa

2
+ ipa

)
+

k2

2

N∑
a �=b=1

1

|λa − λb|2 . (87)

Therefore, the theory reduced to the eigenvalues corresponds to the ordinary Landau
problem for N electrons plus an induced two-dimensional Calogero interaction. Note also that
the matrix measure of integration becomes flat after incorporating one Vandermonde factor
�(λ) into the wave functions. The occurrence of the Calogero interaction is a rather common
feature of matrix theories reduced to eigenvalues: in the present case, the interaction is two-
dimensional, owing to the presence of two Hermitian matrices, and thus it is rather different
from the exactly solvable one-dimensional case [9, 39].

We conclude that the Maxwell–Chern–Simons matrix theory at g = ∞ makes contact
with the physical problem of the fractional quantum Hall effect. The e2/r Coulomb repulsion
is replaced by the Calogero interaction k2/r2; however, numerical results [3, 5, 16] indicate that
quantum Hall incompressible states are rather independent of the type of repulsive potential,
for large B. (The specific form of the potential clearly affects the detailed values of some
quantities such as the gap.)

Some remarks are in order:

• The physical condition imposed by the Gauss law (85) is still that outlined in section
3.2.1: it forces the electrons to stay apart by locking their density to the value of the
background parameter k. The solution of this constraint is however rather different at the
two points g = 0 and g = ∞: for g = 0, it is the geometric, or kinematic, condition of
noncommutativity (39), while at g = ∞ this is a dynamical condition set by a repulsive
potential with appropriate strength.

• Note also that the g = ∞ theory is not, by itself, less difficult than the ab initio quantum
Hall problem: the gap is non-perturbative and there are no small parameters. The
advantage of embedding the problem into the matrix theory is that of making contact with
the solvable g = 0 limit, as we discuss in the next section.

6.2. Conjecture on the phase diagram

In figure (6) we illustrate the phase diagram of the Maxwell–Chern–Simons matrix theory as
a function of its parameters B/m and g. The quantized background charge Bθ = k is held
fixed over the diagram together with average density of the system.

The axes g = 0 and g = ∞ have been discussed in sections 5 and 6.1, respectively. For
g = 0, the theory is solvable and displays a set of states that are in one-to-one relation with the
Laughlin and Jain ground states with filling fractions ν = m/(mk + 1). These non-degenerate
states are selected by choosing the appropriate projection Am ≈ 0 and the values of k and the
density (or the angular momentum). For g = ∞, we found that the theory describes a realistic
Hall system, but its ground states are difficult to find.

In [12], we conjectured that the matrix ground states at g = 0 could match one-to-one
the phenomenological Jain states that are good ansatz in the physical limit g = ∞ (including
the case of Calogero interaction) [5, 16]: indeed, the two sets of states become identical
in the limit of both X,X diagonal, that is (classically) achieved at g = ∞. In order to prove
this conjecture, we would need to consider the evolution of the matrix ground states as the
coupling is varied in between, 0 < g < ∞, and to check that the gap never vanishes, i.e.
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Figure 6. Phase diagram of the Maxwell–Chern–Simons matrix theory. The axes g = 0 and
g = ∞ have been discussed in sections 5 and 6, respectively. The Chern–Simons matrix model
sits at the left down corner.

that there are no phase transitions in (B, g) plane separating the g = 0 and g = ∞ regions
at the specific density values [12]. This conjecture of smooth evolution of matrix Jain states
is indirectly supported by the numerical analyses, showing that the Jain wavefunctions are
accurate ground states of the g = ∞ theory. Further support is given by the form of the
semiclassical density of g = 0 matrix states that is qualitatively the same of g = ∞ Jain
incompressible fluids states.

Let us finally remark that, the limit B → ∞ cannot be taken at g = 0, because quasi-
particle excitations and Jain states in the matrix theory have energies of O(B) and would be
projected out. Instead, the limit B = ∞ can surely be taken in the g = ∞ physical theory
(holding k = Bθ fixed), because the fractional quantum Hall states are known to remain stable.
This implies that the two limits are ordered: the correct sequence is limB→∞ limg→∞ , and
the opposite choice is cut out in the phase diagram of figure 6.

7. Conclusions

We have reviewed the description of the fractional quantum Hall effect given by gauge matrix
theories, that provide one realization of the composite-fermion correspondence. In particular,
the Maxwell–Chern–Simons theory, supplemented by certain projections of states, reproduces
the Jain hierarchical construction of ground-state wavefunctions. These results support the
idea that the fractional Hall states should be uniquely characterized by algebraic conditions
and gauge invariance, rather than by detailed dynamics, because they are exceptionally robust
and universal.

The study of the phase diagram of the matrix theory is clearly necessary to make better
contact between the nice results (g = 0) and the physical regime (g = ∞), upon varying
the potential V = gTr[X,X]2. We plan to study the evolution of matrix ground states for
g > 0 by including the quartic potential in the semiclassical analysis within the mean-field
approximation.

One point to develop is the study of edge excitations of matrix Jain states [40] and the
comparison with the conformal field theory descriptions [20]: in particular, the realization of
the SU(n) symmetry, for ν = n/(2kn + 1), that is still debated [41]. Another open problem
is the derivation of the fractional statistics of quasi-particles in the matrix theory setting. Both
issues require an improvement of the An ≈ 0 projection that could better handle excitations
above the ground state.
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